A disk-wind model with correct crossing of all MHD critical surfaces
نویسندگان
چکیده
The classical Blandford & Payne (1982) model for the magnetocentrifugal acceleration and collimation of a disk-wind is revisited and refined. In the original model, the gas is cold and the solution is everywhere subfast magnetosonic. In the present model the plasma has a finite temperature and the self-consistent solution of the MHD equations starts with a subslow magnetosonic speed which subsequently crosses all critical points, at the slow magnetosonic, Alfvén and fast magnetosonic separatrix surfaces. The superfast magnetosonic solution thus satisfies MHD causality. Downstream of the fast magnetosonic critical point the poloidal streamlines overfocus towards the axis and the solution is terminated. The validity of the model to disk winds associated with young stellar objects is briefly discussed.
منابع مشابه
Systematic Construction of Exact MHD models for Astrophysical Winds and Jets
By a systematic method we construct general classes of exact and selfconsistent axisymmetric MHD solutions describing flows which originate at the near environment of a central gravitating astrophysical object. The unifying scheme contains two large groups of exact MHD outflow models, (I) meridionally self-similar ones with spherical critical surfaces and (II) radially self-similar models with ...
متن کاملNonradial and nonpolytropic astrophysical outflows VI. Overpressured winds and jets
By means of a nonlinear separation of the variables in the governing full set of the magnetohydrodynamic (MHD) equations for axisymmetric plasmas we analyse an exact model for magnetized and rotating outflows which are hotter and overpressured at their axis. These outflows start subsonically and subAlfvénically from the central gravitating source and its surrounding accretion disk. Subsequently...
متن کاملStellar and Disk Winds : Application to Planetary Nebulae
MHD winds can emanate from both stars and surrounding disks. When the two systems are coupled by accretion, it is of interest to know which (if either) of the two dominates the outflow power. Recent observations lead us to consider how such coupled MHD winds may be operating in planetary nebulae (PN). In this context, we calculate the MHD wind power from a coupled disk and star, where the forme...
متن کاملStellar and Disk Winds : Application to Planetary Nebulae Eric
MHD winds can emanate from both stars and surrounding disks. When the two systems are coupled by accretion, it is of interest to know which (if either) of the two dominates the outflow power. Recent observations lead us to consider how such coupled MHD winds may be operating in planetary nebulae (PN). In this context, we calculate the MHD wind power from a coupled disk and star, where the forme...
متن کاملBoundary conditions and critical surfaces in astrophysical MHD winds
Boundary conditions and the nature of the critical surfaces for the problem of stationary MHD outflows are formulated from the point of view of the causality principle. It is shown that the number of the boundary conditions which have to be specified on the surface of the object ejecting plasma is equal to the number of MHD waves outgoing normally from this surface. The boundary conditions for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000